Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleus ; 13(1): 144-154, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35298348

RESUMO

Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae.


Assuntos
Dictyostelium , Membrana Nuclear , Animais , Divisão do Núcleo Celular , Dictyostelium/metabolismo , Mitose , Membrana Nuclear/metabolismo , Espastina/metabolismo
2.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159217

RESUMO

Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.


Assuntos
Dictyostelium , Complexo de Proteínas Formadoras de Poros Nucleares , Centrossomo/metabolismo , Dictyostelium/metabolismo , Mitose , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
3.
Cells ; 9(8)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759812

RESUMO

We expressed Dictyostelium lamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-ΔNLSΔCLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of the Dictyostelium lamin, they are likely relevant also for wild-type lamin.


Assuntos
Dictyostelium/metabolismo , Laminas/metabolismo , Proteínas de Protozoários/metabolismo , Citosol/metabolismo , Dictyostelium/citologia , Dictyostelium/genética , Concentração de Íons de Hidrogênio , Laminas/genética , Luz , Mutação , Fosforilação/genética , Multimerização Proteica , Proteínas de Protozoários/genética , Estresse Mecânico
4.
Int J Dev Biol ; 63(8-9-10): 509-519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840788

RESUMO

The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export. The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.


Assuntos
Núcleo Celular/metabolismo , Dictyostelium/fisiologia , Membrana Nuclear/metabolismo , Centrômero/metabolismo , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Dictyostelium/genética , Cinesinas/metabolismo , Laminas/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Mitose , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Multimerização Proteica , Tubulina (Proteína)/química , Quinases da Família src/metabolismo
5.
Cells ; 8(2)2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781468

RESUMO

Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.


Assuntos
Dictyostelium/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Permeabilidade da Membrana Celular , Dictyostelium/ultraestrutura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Oócitos/metabolismo , Oócitos/ultraestrutura , Xenopus
6.
Mol Biol Cell ; 30(4): 453-466, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586322

RESUMO

The highly conserved enzyme arginyl-tRNA-protein transferase (Ate1) mediates arginylation, a posttranslational modification that is only incompletely understood at its molecular level. To investigate whether arginylation affects actin-dependent processes in a simple model organism, Dictyostelium discoideum, we knocked out the gene encoding Ate1 and characterized the phenotype of ate1-null cells. Visualization of actin cytoskeleton dynamics by live-cell microscopy indicated significant changes in comparison to wild-type cells. Ate1-null cells were almost completely lacking focal actin adhesion sites at the substrate-attached surface and were only weakly adhesive. In two-dimensional chemotaxis assays toward folate or cAMP, the motility of ate1-null cells was increased. However, in three-dimensional chemotaxis involving more confined conditions, the motility of ate1-null cells was significantly reduced. Live-cell imaging showed that GFP-tagged Ate1 rapidly relocates to sites of newly formed actin-rich protrusions. By mass spectrometric analysis, we identified four arginylation sites in the most abundant actin isoform of Dictyostelium, in addition to arginylation sites in other actin isoforms and several actin-binding proteins. In vitro polymerization assays with actin purified from ate1-null cells revealed a diminished polymerization capacity in comparison to wild-type actin. Our data indicate that arginylation plays a crucial role in the regulation of cytoskeletal activities.


Assuntos
Aminoaciltransferases/metabolismo , Arginina/metabolismo , Movimento Celular , Dictyostelium/citologia , Dictyostelium/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Actinas/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Dictyostelium/efeitos dos fármacos , Mutação/genética , Fenótipo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos
7.
Eur J Cell Biol ; 96(2): 119-130, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28104305

RESUMO

The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.


Assuntos
Centrossomo/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Dictyostelium/citologia , Mitose/fisiologia
8.
Cells ; 5(1)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999214

RESUMO

The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src1(1-646), a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.

9.
Methods Enzymol ; 569: 23-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778551

RESUMO

The identification of a bona fide lamin-like protein in Dictyostelium made this lower eukaryote an attractive model organism to study evolutionarily conserved nuclear envelope (NE) proteins important for nuclear organization and human laminopathies. Proximity-dependent biotin identification (BioID), reported by Roux and colleagues, is a powerful discovery tool for lamin-associated proteins. In this method, living cells express a bait protein (e.g., lamin) fused to an R118G-mutated version of BirA, an Escherichia coli biotinylase. In the presence of biotin, BirA-R118G biotinylates target proteins in close proximity in vivo, which are purified using streptavidin and identified by immunoblotting or mass spectrometry. We adapted the BioID method for use in Dictyostelium amoebae. The protocols described here successfully revealed Dictyostelium lamin-like protein NE81 proximity to Sun1, a conserved inner nuclear membrane protein.


Assuntos
Dictyostelium/metabolismo , Laminas/fisiologia , Proteínas Nucleares/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/fisiologia , Cultura Axênica , Biotina/metabolismo , Biotinilação , Núcleo Celular/metabolismo , Dictyostelium/citologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Coloração e Rotulagem
10.
Eur J Cell Biol ; 94(6): 249-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25952183

RESUMO

The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum.


Assuntos
Amoeba/metabolismo , Evolução Biológica , Centrossomo/metabolismo , Dictyostelium/metabolismo , Lâmina Nuclear/metabolismo , Animais , Cromatina/metabolismo , Humanos , Filogenia
11.
Methods Mol Biol ; 983: 283-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23494313

RESUMO

The significance of amoebae for studies of nuclear architecture has considerably increased in the recent years. The availability of a protocol for isolation of nuclei in a quality sufficient for high-resolution light and electron microscopy is a prerequisite for such studies. Here we present a protocol for high enrichment of nuclei by sucrose density-gradient centrifugation. Moreover, we describe how to use these isolated nuclei as specimens for immunofluorescence and immune-electron microscopy of ultrathin sections.


Assuntos
Fracionamento Celular/métodos , Núcleo Celular/ultraestrutura , Dictyostelium/citologia , Núcleo Celular/metabolismo , Centrifugação com Gradiente de Concentração/métodos , Dictyostelium/metabolismo , Dictyostelium/ultraestrutura , Fixadores/química , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Imunoeletrônica/métodos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Inclusão em Plástico
12.
Proc Natl Acad Sci U S A ; 109(34): 13632-7, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22847424

RESUMO

Chemotaxis depends on a network of parallel pathways that coordinate cytoskeletal events to bias cell movement along a chemoattractant gradient. Using a forward genetic screen in Dictyostelium discoideum, we identified the Ste20 kinase KrsB, a homolog of tumor suppressors Hippo and MST1/2, as a negative regulator of cell spreading and substrate attachment. The excessive adhesion of krsB(-) cells reduced directional movement and prolonged the streaming phase of multicellular aggregation. These phenotypes depended on an intact kinase domain and phosphorylation of a conserved threonine (T176) within the activation loop. Chemoattractants triggered a rapid, transient autophosphorylation of T176 in a heterotrimeric G protein-dependent and PI3K- and TorC2-independent manner. The active phosphorylated form of KrsB acts to decrease adhesion to the substrate. Taken together these studies suggest that cycling between active and inactive forms of KrsB may provide the dynamic regulation of cell adhesion needed for proper cell migration and chemotaxis. KrsB interacts genetically with another D. discoideum Hippo/MST homolog, KrsA, but the two genes are not functionally redundant. These studies show that Hippo/MST proteins, like the tumor suppressor PTEN and oncogenes Ras and PI3K, play a key role in cell morphological events in addition to their role in regulating cell growth.


Assuntos
Quimiotaxia , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Protozoários/genética , Animais , Adesão Celular , Movimento Celular , Dictyostelium , Dimerização , Genes Supressores de Tumor , Proteínas de Fluorescência Verde/química , Fator de Crescimento de Hepatócito/química , Humanos , Proteínas do Tecido Nervoso/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Treonina/química
13.
Nucleus ; 3(3): 237-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572958

RESUMO

Lamins are the major components of the nuclear lamina and serve not only as a mechanical support, but are also involved in chromatin organization, epigenetic regulation, transcription and mitotic events. Despite these universal tasks, lamins have so far been found only in metazoans. Yet, recently we have identified Dictyostelium NE81 as the first lamin-like protein in a lower eukaryote. Based on the current knowledge, we draw a model for nuclear envelope organization in Dictyostelium in this Extra View and we review the experimental data that justified this classification. Furthermore we provide unpublished data underscoring the requirement of posttranslational CaaX-box processing for proper protein localization at the nuclear envelope. Sequence comparison of NE81 sequences from four Dictyostelia with bona fide lamins illustrates the evolutional relationship between these proteins. Under certain conditions these usually unicellular social amoebae congregate to form a multicellular body. We propose that the evolution of the lamin-like NE81 went along with the invention of multicellularity.


Assuntos
Laminas/metabolismo , Proteínas de Protozoários/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Animais , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Dictyostelium/metabolismo , Laminas/química , Membrana Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química
14.
Mol Biol Cell ; 23(2): 360-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090348

RESUMO

Lamins build the nuclear lamina and are required for chromatin organization, gene expression, cell cycle progression, and mechanical stabilization. Despite these universal functions, lamins have so far been found only in metazoans. We have identified protein NE81 in Dictyostelium, which has properties that justify its denomination as a lamin-like protein in a lower eukaryote. This is based on its primary structure, subcellular localization, and regulation during mitosis, and its requirement of the C-terminal CaaX box as a posttranslational processing signal for proper localization. Our knockout and overexpression mutants revealed an important role for NE81 in nuclear integrity, chromatin organization, and mechanical stability of cells. All our results are in agreement with a role for NE81 in formation of a nuclear lamina. This function is corroborated by localization of Dictyostelium NE81 at the nuclear envelope in human cells. The discovery of a lamin-like protein in a unicellular organism is not only intriguing in light of evolution, it may also provide a simple experimental platform for studies of the molecular basis of laminopathies.


Assuntos
Dictyostelium/metabolismo , Laminas/metabolismo , Lâmina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Ciclo Celular , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Humanos , Laminas/química , Laminas/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Prenilação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Deleção de Sequência
15.
J Cell Sci ; 120(Pt 24): 4345-54, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18042625

RESUMO

The genome of the social amoeba Dictyostelium discoideum encodes approximately 285 kinases, which represents approximately 2.6% of the total genome and suggests a signaling complexity similar to that of yeasts and humans. The behavior of D. discoideum as an amoeba and during development relies heavily on fast rearrangements of the actin cytoskeleton. Here, we describe the knockout phenotype of the svkA gene encoding severin kinase, a homolog of the human MST3, MST4 and YSK1 kinases. SvkA-knockout cells show drastic defects in cytokinesis, development and directed slug movement. The defect in cytokinesis is most prominent, leading to multinucleated cells sometimes with >30 nuclei. The defect arises from the frequent inability of svkA-knockout cells to maintain symmetry during formation of the cleavage furrow and to sever the last cytosolic connection. We demonstrate that GFP-SvkA is enriched at the centrosome and localizes to the midzone during the final stage of cell division. This distribution is mediated by the C-terminal half of the kinase, whereas a rescue of the phenotypic changes requires the active N-terminal kinase domain as well. The data suggest that SvkA is part of a regulatory pathway from the centrosome to the midzone, thus regulating the completion of cell division.


Assuntos
Citocinese/fisiologia , Dictyostelium/fisiologia , Genes de Protozoários , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Centrossomo/metabolismo , Dictyostelium/citologia , Dictyostelium/enzimologia , Dictyostelium/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...